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Abstract 

Melting sea ice has led to an increase in navigation in Canadian Arctic waters. However, these waters are 

sparsely surveyed and pose a risk to mariners. Recognizing this issue, the government of Canada has granted 

funds to develop a pilot program to begin collecting bathymetric data through a trusted crowd-sourced 

approach. As part of this project, the University of New Brunswick’s Ocean Mapping Group is tasked with 

the processing of the collected data. Through an automated approach the software will process the data with 

the end product being a final depth measurement. The software has been broken down into several modules 

to complete the task at hand. This paper will delve into the global navigational satellite system (GNSS) and 

sound velocity profile (SVP) processing modules, including the methodologies and results.  
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Introduction 

While it is unfortunate that climate change is causing the melting of Arctic sea ice, this is the current 

situation and some will find opportunities towards navigation in these waters. However, vast areas of the 

Arctic remaining unchartered to this day and this presents a liability towards navigational safety.  The 

government of Canada is employing an untraditional approach to combat this predicament as traditional 

survey methods would be far too costly and timely to undertake. This initiative is a Crowd-Sourced 

approach where participating local communities are empowered with the choice of collecting crowd-

sourced bathymetric (CSB) data while traversing their local waterways. Participants are given specialized 

hardware which can be towed from a watercraft while 

simultaneously collecting GNSS, motion and sonar data.  

Apart from acquisition, to make this project feasible a system 

must be in place to efficiently process the data through 

automation while improving accuracy and assessment of 

uncertainty. To do so required a comprehensive workflow 

which spans from acquisition to dissemination. To make the 

processing more robust, the specific steps of the process have 

been modularized to do one thing and to do it well. These 

modules are visualized in the technical flowchart in figure 1.  

The location information provided by the GNSS receiver 

plays a crucial role in positioning the sounder information. 

This includes latitude, longitude and height. Unfortunately, 

obtaining a strong GNSS signal is more stressed than at mid-

latitude regions, but several methods exist to improve upon 

the accuracy of the GNSS reading. After the improvement 

has been made, qualification of the readings on a per-line 

basis is done to sort the lines on quality. If the quality meets 

threshold requirements, it is able to be used for vertical referencing.   

When conducting a hydrographic survey, depth is never directly measured it is only inferred. We directly 

measure the time it takes for the sonar signal to propagate to the seafloor and back, known as the Two-Way 

Travel Time (TWTT). Combining the ½(TWTT) with incidence angle and sound speed, we are able to 

calculate depth (Mirjam Snellen, 2008). The speed of sound calculation is derived from temperature, 

Figure 1 Technical Flowchart of the CSB Data 
Processing 
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salinity and pressure/depth variables and is given as a function of depth (Beaudoin, 2009). This array of 

sound velocity vs depth data is known as the Sound Velocity Profile (SVP).  

The SVP plays a crucial role in obtaining an accurate bottom depth calculation and it is important to have 

the input variables represented accurately. The objective of the SVP module is to utilize an appropriate 

oceanographic model which can provide the inputs to the speed of sound calculation for the Arctic survey 

region. Once the model has been selected, the scripts must then query the hydrodynamic model for the 

oceanographic data per input line while considering date, time and location. After the inputs to the speed 

of sound calculation have been retrieved, the conversion to sound velocity is made using a sound-velocity 

algorithm followed by creation of the final formatted SVP.  

This paper will dive deeper into the development of qualifying GNSS readings on quality of data and the 

process of selecting the appropriate oceanographic model and sound-velocity algorithm along with the 

processing steps to obtain the final SVP.  

Related Work 

GNSS 

Regardless of the method used to acquire hydrographic data, challenges occur when surveying in the Arctic. 

The primary challenges common across literature are obtaining valuable GNSS data and issues with 

obtaining accurate tidal heights and sound velocity profiles. Two great starting points towards 

understanding GNSS positioning and issues in the Arctic are Guide to GPS Positioning (Wells et al, 1999) 

and GNSS Use in the High Arctic: Issues and Solutions from a Canadian Perspective (Langley, 2009). The 

major issues of using GNSS in the Arctic compromises primarily of ionospheric and geometry errors. 

Jensen et al (2010) discussed these issues with intention to raise awareness and foster thoughts around the 

issues. The authors concluded that geometry issues can only be corrected by improving navigation system 

coverage in this region. Further conclusions stated that using multiple frequencies basically eliminated 

ionospheric delays, but high order effects still present an issue. Jayachandran et al (2009) reiterated the 

issues with ionospheric delays associated with GNSS in the Arctic and taking it further they described the 

concept of scintillation which has large temporal and spatial variance across the Arctic. The scientific 

research objectives of this paper were to assess the drivers and variabilities of polar cap convection and the 

generation and dynamics of ionization structures for which they concluded that more research needed to be 

completed. Finally, Reid (2015) explains GNSS integrity in the Arctic with particular emphasis on using 

Advanced Receiver Autonomous Integrity Monitoring (ARAIM) and Satellite Based Augmentation 

Systems (SBAS) as a potential aid to navigation and mapping in the Arctic. Reid explains that this is just 
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currently not feasible because of limitations in the GNSS constellations covering the Arctic. However, 

planned expansion is expected in the next decade and opens the possibility to further research including 

uses in vertical referencing for bathymetric surveys.   

Sound Velocity Profile 

It is always best practice to collect temperature and salinity values through in-situ casts while conducting a 

survey, though this is not always possible for varying reasons. In the case of this project, having the 

participants collect this data would add undue complexity as the participants are not hydrographers, would 

add considerable expense to the equipment package, and planning the deployment of additional equipment 

could interfere with survey operations. As a result, during processing of the data from this project we will 

obtain no observed sound velocity information and thus must supplement with the use of hydrodynamic 

models. When presented with a similar problem, Beaudoin et al (2006) has shown that the use of the World 

Open Atlas (WOA) model could be used appropriately to supplement the absence of observed SVPs without 

seriously affecting sounding accuracy in the Arctic. Church et al (2012) has shown that model output could 

be used as a substitute for actual observations with little effect on ray-tracing uncertainty. Furthermore, the 

authors stated that a model can be used to learn about the temporal distribution of salinity and temperature 

in comparison to a single point as when taking a traditional cast. This aids in survey planning and the use 

of a model would improve survey efficiency and uncertainty.  To further this thought, Calder et al (2004), 

has shown that using models could bring down operational costs of conducting surveys by avoiding taking 

casts. In their study, these authors have shown that a model-based SVP can be used within the budget error 

of International Hydrographic Organization (IHO) standards. However, the authors did specifically mention 

that more studies are necessary when working in shallow environments (0-30m) to determine if a model is 

suitable.  

Once a model has been chosen with appropriate spatial and temporal coverage, the temperature, salinity 

and depth variables are able to be retrieved. At this point a conversion of these inputs to a final sound 

velocity in water is needed. There exist multiple equations to perform this conversion, some more 

specialized to certain applications than others. These are available in literature from authors such as (Chen 

& Millero, 1997), (Grosso, 1974), (Mackenzie, 1981), (Wilson, 1960) and (Medwin, 1975). Pike and 

Beiboer (1993) has made a comparative study of several different algorithms along with recommendations. 

For water with depths less than 1000m the Chen and Millero equation is recommended by these authors. 

While the Chen and Millero equation has been adopted for many years as standard, in 2009 the 

Intergovernmental Oceanographic Commission (IOC) adopted the TEOS-10 equation. This equation now 

stands as the official descriptor of seawater and ice properties in marine science. Significant changes 
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introduced in this formula are the use of Absolute Salinity along with introduction of units to Ocean 

salinities (g/kg) (Intergovernmental Oceanographic Commission, 2010). It is commonly accepted that the 

greater the accuracy in determining the sound-velocity, the greater that accuracy carries forward into the 

final depth measurement (Alkan, Kalkan, & Turkiye, 2006) and the appropriate selection of the correct 

equation is important. 

In order to assess the validity of the SVP, Beaudoin et al (2006) has laid out some methods on the 

comparison between observed SVPs and model derived SVPs. In this case it is necessary to compare the 

model-derived data to a ‘true’ dataset. The two profiles can be directly compared by plotting both into one 

depth-velocity graph. However, it can be taken further by completing the raytracing using both profiles 

independently to calculate depth. When plotting these results, the real-world implication of the associated 

error can be made when comparing to a known bottom depth.  

Methodology 

Process GNSS data via Precise Point Positioning (PPP) 

The HydroBall is able to capture both L1 and L2 GPS frequencies as well as GLONASS signals. However, 

there are significant challenges surrounding obtaining accurate readings in a predominately Arctic survey 

setting when compared to reading obtained at mid-latitudes. The main challenges in resolving an accurate 

GNSS reading occur primarily from poor satellite-receiver geometry and ionospheric effects (Jensen & 

Sicard, 2010). 

Due to low inclination angles of GPS and GLONASS constellations, the Satellite geometry is never 

favorable in the Arctic and satellites will reside close to the horizon, see figure 2. The factor known as the 

Geometrical Dilution of Precision (GDOP) is a term used to capture the GNSS geometry in 3D position 

and time. A higher GDOP reading indicates a poorer satellite geometry and in turn negatively influences 

the ultimate positioning accuracy (Wells, et al., 1999), see figure 3.  The DOP acts as a multiplier towards 

measurement accuracy, meaning we want to minimize these effects as much as possible to obtain the most 

accurate position (Wells, et al., 1999).  
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Figure 2 GPS satellite Ground Track (55 degree inclination) src: colorado.edu 

 

Ionospheric errors also play a crucial role at higher latitudes 

when we have low satellite elevation (Monge, Clara de Lacy, 

& Radicella, 2011). While it is true that dual-frequency 

receivers correct first-order ionospheric effects almost 

completely, higher order effects are not handled (Jensen & 

Sicard, 2010). These higher order ionospheric errors are a 

function of the electron density distribution and the magnetic 

field vector along the GPS signal propagation path (Matteo, 

Morton, Chandrasekaran, & Van Graas, 2009). These higher 

order ionospheric effects can cause errors of more than 10cm.  

To obtain a greater positional accuracy, post-processing of 

the GNSS data must be completed. Several methods exist to 

help obtain a greater positional accuracy such as Differential 

GNSS (DGNSS), Real Time Kinematic (RTK), Post 

Processed Kinematic (PPK) and Precise Point Positioning (PPP). Due to the increased complexity of setup 

(base station needed), distance restrictions and associated costs involved with DGNSS, RTK and PPK 

solutions, PPP was chosen as the post-processing method. It can be shown that PPP provides an excellent 

Figure 3 GNSS Geometry (DOP) src: Wells et al, 
1999 
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performance especially when using final orbits to generate the final solution (Malinowski & Kwiecien, 

2016), negating many of the benefits of using a differential system as well as providing simplicity for the 

operator. PPP is able to provide a sub decimeter accuracy with dual frequency kinematic readings (Huber, 

et al., 2010). However, PPP does have a longer convergence time that will need to be accounted for.  

There are several choices of systems available to run the PPP processing including RTKLIB, UNB GAPS 

and NRCAN PPP. Each of these systems provides roughly the same output, however NRCAN PPP was 

ultimately chosen. This is because GAPS does not support GLONASS which is deemed necessary for the 

project as GPS inclination is limited for the project region. RTKLIB was not able to take GLONASS into 

account when converting the raw GNSS readings from the Hemisphere format to Rinex. The NRCAN PPP 

system allows for several different methods of submission. Keeping our automation goals in mind a python 

script utilizes a WGET method to submit RINEX files to their server and then fetches the results.  

The final output of the NRCAN PPP service is provided as a .zip file containing of importance a .pdf 

summary of the processing, a .sum of the processing parameters summary, an errors.txt file outlining errors 

and warnings which occurred during processing and a .pos file which contains the actual position 

information.  

While PPP no doubt improves our GNSS readings it does come with limitations. The primary limitation is 

the long convergence time needed to obtain a solution (Approximately 10-30 minutes). Surveying in the 

Arctic does present its own limitation, particularly on higher degree ionospheric errors, satellite geometry, 

topographic zenith delay and multipath errors, which add to uncertainty and loss of accuracy in the GNSS 

readings. Additionally, in cases where we cannot resolve even a poor GNSS reading, the PPP processing 

will reject these readings and are documented in the .sum file. As shown there are limitations when using 

GNSS for some of which we can help to mitigate, others we cannot. Either way, it is important to document 

these limitations in the metadata so that the final user obtains a transparent explanation of the limitations 

and challenges with this data. 

Qualify the GNSS PPP output via a threshold filter 

Once the location data has been processed using PPP, the GNSS reading is then placed under a threshold 

filter to sort acceptable vs. non-acceptable readings on a per line basis. This step is crucial since vertical 

height is of utmost importance and poor GNSS readings will hinder the accuracy of the final depth sounding. 

If the GNSS reading is acceptable we will use the ellipsoidal vertical height otherwise we will need to 

estimate vertical height through a hydrodynamic tidal model and a traditional water level reference 

approach. To filter the results a combination of six threshold variables were chosen. These variables are 
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number of satellite vehicles (NSV), geometric 

dilution of precision (GDOP), standard 

deviation of latitude (SDLAT), standard 

deviation of longitude (SDLON), standard 

deviation of height (SDHGT) and standard 

deviation of clock (SDCLK). The minimum 

standard deviation values chosen for latitude, 

longitude and height are 5.0m, 5.0m and 0.5m 

respectively. These values were chosen to maintain a CHS level 1a survey standard. The maximum GDOP 

value selected is 3.5 which according to Langley (1999) is considered an excellent rating, see figure 4. The 

GDOP threshold value may be changed later to reflect a good value (4-6) which would be sufficient for the 

project. The minimum NSV value selected is 6 and the standard deviation of the clock is 3. The NSV and 

SDCLK values will be selected with more precision after further testing. All values can be adjusted to be 

more or less lenient depending on requirements.  

Using these threshold values, each reading is sorted on a line-by-line basis and then put into a .srt file which 

splits the GNSS readings as acceptable or not-acceptable. Some limitations of this step are that it is 

necessary for the system to be able to keep track of which readings obtained the vertical reference from 

GNSS or from tidal models and include this in the metadata. This tracking and documenting adds a layer 

of complexity to the system. Also, it is difficult to come up with a one-size fits all approach to threshold 

values, however using the outlined values this should provide a consistent criteria for filtering.  

 

Sound Velocity Profile 

Ideally, we would be able to directly calculate sound speed with in-situ casts done while surveying. Due to 

project constraints towards operator simplicity this is not an option and thus sound speed will be derived 

from oceanographic models. When selecting a model, we must be able to have accurate temperature and 

salinity readings throughout the water column and the model coverage must extend to the surveying 

locations of this project at an acceptable temporal and spatial resolution.  

Three model candidates that have Arctic coverage were selected, being World Ocean Atlas 18 (WOA18), 

Real Time Operational Global Ocean Forecast System (RTOFS) and Hybrid Coordinate Ocean Model 

(HYCOM). While HYCOM and RTOFS are numerical baroclinic hydrodynamic ocean models, the 

WOA18 is a collection of in-situ oceanographic data. As a result the WOA18 data does not provide the 

Figure 4DOP Ratings src: Langley, 1999 Figure 4 DOP Ratings src: Langley, 1999 
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same temporal resolution of the HYCOM and RTOFS data except on an annual, seasonal and monthly 

scale, where values are interpolated across the grid (National Oceanic abd Atmospheric Administration, 

2019). After careful contemplation, the HYCOM model was ultimately chosen for its sufficient Arctic 

coverage, archive access and Thredds server support as summarized in table 1. The HYCOM model can 

provide archived data, nowcasts (current state) and forecasts of oceanic parameters, this includes three-

dimensional data for temperature, salinity and depth (Metzger, et al., 2014).  

Table 1 Summary of Comparisons between the three candidate Ocean Models 

 

Once the model was selected, scripts were then written on interacting with the model through the 

Thematic Real-time Environmental Distributed Data Services (THREDDS) server. HYCOM has several 

different model domains to choose from each covering different areas with differing resolution. The 

chosen domain was the Global Ocean Forecasting System (GOFS 3.1) specified with GLBv0.08 

resolution. The specifics towards this domain are provided in table 2.  To collect the necessary 

temperature and salinity data arrays needed to calculate the sound velocity, the HYCOM model requires 

inputs of date, time, latitude and longitude for the area of interest. These inputs are obtained from the .srt 

file created in the GNSS module upstream. The .srt file contains potentially hundreds to thousands of 

lines with unique data values. To minimize queries being sent to the HYCOM server, it was necessary to 

create a query cache. This is necessary because the HYCOM model does not directly accept the real 

HYCOM (GOFS 3.1) WOA18 RTOFS

Temperature, Salinity, 

Depth Available Yes Yes Yes

Horizontal Resolution

0.08 deg lon x 0.08 

deg lat (40S-40N); 

0.08 deg lon x 0.04 

deg lat (poleward)

0.25 deg lon x 

0.25 deg lat 

(60N-90N)

0.08 deg lon x 

0.08 deg lat

Vertical Resolution 0m-5000m 0m-4000m 0m-4000m

Temporal Resolution 3 hours

Annual, 

Seasonal, 

Monthly 3 hours

Access

Thredds, FTP, 

OpenDAP, NetCDF, 

HTTPS

Thredds, 

HTTPS, FTP, 

GeoPortal, 

NetCDF, Live 

Access Server

FTP, NetCDF, 

OpenDAP, 

HTTPS

Archive Access Yes Yes, limited No

Arctic Support Yes Yes Yes

Automation Support Yes Yes, limited Yes
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values obtained from the .srt file, instead requiring conversion to their proprietary index to obtain results. 

A summary of the conversions necessary for date, time, latitude and longitude are provided in table 3. 

Due to the model resolution limits, identical queries may be produced for input data close in space and 

time proximity. This would be burdensome to processing efficiency and the THREDDS server to run each 

query individually and hence why the use of a cache is needed.  

Table 2 Summary of GOFS 3.1 Specifications (src: https://www.hycom.org/dataserver/gofs-3pt1/analysis) 

 

Table 3 Required conversions of input parameters for HYCOM Salinity and Temperature Query 

 

Unique queries are then ran against the HYCOM model providing data arrays for Salinity-Depth and 

Temperature-Depth. In the case where null data is returned by the model a radial search function is 

executed, finding the nearest-neighbour with non-null data. The search function works by using a counter 

HYCOM (GOFS 3.1)

Title

Global Ocean Forecasting System 

(GOFS 3.1)

Grid GBLv0.08

Span 80S - 90N

Data Range July-2014 - Present

Frequency 3 hours

Horizontal Resolution

0.08 deg lon x 0.08 deg lat (40S-

40N); 0.08 deg lon x 0.04 deg lat 

(<40S & >49N)

Latitude Hycom Map Time Hycom Map
Index Range: [0:3250] * Hours since epoch (2000-01-01 00:00:00)

index value step Index Range: [0:T] T updates every hour

0-1000 (-80) - (-40) 0.04° index value step

1000-1500 (-40) - (0) 0.08° 0 157812 3.06h

1500 0 0.08°

1500-2000 (0) - (40) 0.08°

2000-3250 (40) - (90) 0.04°

Longitude Hycom Map Depth Hycom Map
* Degrees East Index Range: [0:39]

Index Range: [0:4499] index value step

index value step 0 0 Xm

0 0 0.08° 39 5000 non-linear

4499 359.92 0.08°
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and index to iteratively search a radius from given location by one step. The function starts off going up 

from the center by the step size. If this fails it returns to the center and goes right by one step size. This is 

repeated going down and to the left respectively. If no data is returned, the function will then search the 

diagonals, beginning with going up and to the right of center by one step size, down and to the left of center 

by one step size, up and to the left of center by one step size and down and to the right of center by one step 

size. If these queries fail, the step size is increased by one and the search is repeated until data is found. 

Note that the radial search only applied to the location, date and time are held constant during the process.  

After retrieval of the temperature and salinity arrays, the data must be converted from HYCOM values to 

real world values to calculate the sound velocity. The conversion factor is provided in figure 5. Once 

converted, the temperature and salinity arrays are combined with latitude and longitude values and the 

sound velocity is calculated using the TEOS-10 algorithm. The significant change that occurs with TEOS-

10 when compared the traditional methods is that the use of Absolute Salinity is adopted over Practical 

Salinity when describing the content of salt in seawater. Absolute Salinity is the mass fraction of salt in 

seawater and has units of g/kg whereas Practical Salinity is the measure of conductivity of seawater and is 

unitless. This has numerous advantages which can be found in the TEOS-10 manual (Intergovernmental 

Oceanographic Commission, 2010), with the primary benefit being increased accuracy from the use of 

Practical Salinity. The main disadvantage to the TEOS-10 algorithm is the complexity of the algorithm, 

making it unfeasible to derive our own implementation. Fortunately, a python implementation is freely 

available in the Gibbs-SeaWater (GSW) Oceanographic Toolbox Libraries, which provided the functions 

to convert Practical Salinity to Absolute Salinity and to perform the TEOS-10 sound velocity calculation. 

The final sound velocities are formatted as velocity-depth arrays.  

Finally, the output is formatted as a Caris SVP file and saved in the working directory. This file format is 

described in figure 6. Under the comment section, the lines which the SVP are applicable to in the .srt are 

given as well as the query used to generate the data from HYCOM. A SVP file is created for each unique 

sound velocity profile which is derived from each unique HYCOM query.  

 

Figure 5 HYCOM value to real world value conversion chart 
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 Figure 6 Caris SVP File Format Specifications 

 

The challenges associated with collecting accurate SVP involve model limitations and sound velocity 

conversion. Resolutions for the model grid are not ideal in both location and time, leading to inaccuracies. 

More so, truthing the model data is very difficult as it requires in-situ casts which are difficult and costly to 

obtain. Limitations when converting to sound velocity are that we must be trusting of the algorithm chosen. 

The sound velocity algorithm and chosen model should be the best selection for the area of interest and 

ideally would be applicable universally across survey regions. To communicate transparency to the final 

user, metadata should include the uncertainty associated with the chosen SVP model obtained through 

comparison with observed data, limitations of the search and query functions and the sound speed 

calculation used. 

Line 1: specified SVP file version

Line 2: name of file

Line 3: year-Julian date time latitude longitude comment

Line 4-6+: depth velocity
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Discussion of the Results 

GNSS 

While many studies exist on the benefits of additional processing on GNSS readings, something that had 

not been investigated thoroughly was the benefits or drawbacks on using a single constellation (GPS) versus 

using multiple constellations (GPS + GLONASS) in the Arctic. To 

make this assessment, 22 raw GNSS datasets were obtained for on-

site recordings in the Arctic collected by the Hydroball. The 

locations ranged from Gjoa Haven, Baffin Island to Greenland, as 

shown in figure 7. The timespan for the data was December 2017 

to October 2018 and included kinematic and stationary data. The 

data was then processed using the regular workflow of PPP and the 

sorted using the qualification scripts.  

Once processed, the each of the 22 datasets were summarized into 

a mean and standard deviation for the file. The mean and standard 

deviations of each of these 22 datasets were then used to create a 

single mean and standard deviation for each of the qualification 

metrics. The findings are shown below in table 4. We can see from the table that on average the NSV and 

GDOP values are more favourable when using both constellations, as expected. For the most part the rest 

of the variable are consistent amongst both options, with the exception of the clock standard deviation, 

showing some variance.  

Table 4 Summarized Qualification Metrics 

 

GPS+GLONASS GPS Only GPS+GLONASS GPS Only GPS+GLONASS GPS Only

Mean 12.54 8.84 1.90 2.45 0.17 0.19

Stdev 1.28 0.89 0.25 0.45 0.13 0.14

Max 15.39 10.74 2.50 4.04 0.50 0.52

Min 10.42 7.32 1.55 1.82 0.05 0.04

GPS+GLONASS GPS Only GPS+GLONASS GPS Only GPS+GLONASS GPS Only

Mean 0.17 0.17 0.32 0.34 1.22 0.94

Stdev 0.11 0.11 0.24 0.27 1.28 0.67

Max 0.36 0.40 0.87 1.00 5.15 2.38

Min 0.04 0.03 0.08 0.08 0.24 0.22

Standard Deviation LON(95%) (m) Standard Deviation HGT(95%) (m) Standard Deviation CLK(95%) (ns)

Number Satellites Visible (NSV) Geometric Dilution of Precision Standard Deviation LAT(95%) (m)

Figure 7  Location of GNSS Dataset 
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A chart was created to summarize the qualification parameters towards location in figure 8. We can see 

again that the data is relatively the same amongst the two. We do see a higher maximum for the standard 

deviation of height with the GPS only measurement.  

 

Figure 8  Summarized Qualification Parameters 

Both datasets were then taken and processed using PPP and then qualified. Each dataset was then 

analyzed and a final pass rate for all the lines in the set was created. This is shown in figure 9, where a 

number of interesting finding can be inferred. Overall all location values are favorable with the use of 

GLONASS in addition to GPS. This did come at the expense of an increase in the clock standard 

deviations. A slightly higher pass rate was seen when using both constellations but not by a significant 

amount. On days where the GPS signal was poor (ie. 15_41_04-2018_10_21-gps &15_45_32-

2018_10_21-gps), there was a qualification rate of 0% in the GPS only data. However, when adding 

GLONASS support we were able to actually use this data and bring up the overall qualification rate to 

88% and 96% respectively. For this factor alone, it may be a better choice to use both constellations. The 

final average pass rate for all data was 84.6% for GPS and GLONASS observations and 74.7% for GPS 

Only. 

*_H = GPS+GLONASS 

*_R = GPS Only 
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Figure 9  Dataset Qualification Pass Rate 

Sound Velocity Profile 

To help assess the accuracy of the HYCOM model data, real CTD casts were gathered from the Canadian 

Coast Guard vessel, the Amundsen. The data used was collected in various locations across the Canadian 

Arctic in the year 2017. The observed CTD casts were filtered to include only data with depths of 100m or 

less as this is the vertical capability limit of the hardware employed in this project. In total there are 17 CTD 

casts which serve as the ‘truth’. The locations of these casts are visualized in figure 10 and metadata is 

shown in table 5.  Comparable HYCOM data was 

collected based on the time, date and location of the 

CTD cast. All data will be formatted into three fields, 

depth (m), temperature (oC) and salinity (ppt). A 

comparison of the Salinity, Temperature and Depth 

data was made through correlation, graph 

visualization and differential comparison. Following 

this, the data was converted to SVPs and a further 

comparison was made on the depth error when used 

to raytrace.  

Figure 10 Location of Observed CTD Casts (courtesy of Google) 
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Table 5 Metadata for Observed CTD Casts 

 

After the 17 casts of observed data had been collected and formatted, HYCOM model queries were created 

to obtain model casts for the same locations and time. To be able to compare the two datasets, some 

modifications needed to be made. The observed casts have a vertical resolution of 1m while the model 

cast’s vertical resolution is more course at a range of 2m up to 10m intervals. To make a fair comparison, 

the model data was converted to the 1m scale keeping the value constant for the range. Additionally, NaN 

values in the observed dataset were ignored if occurring as the first or last value in the casts. In the 1702_086 

dataset a series of NaN values were observed in the salinity readings between 5-7 meters. In this case the 

NaN values were replaced with a linear average between the 4 and 8 meter values. Finally, when the length 

of the dataset did not agree between the observed and model, the last model value was held constant and 

extended to the length of the observed cast. In the case where the model cast length was extended beyond 

the model, the extra data was ignored.  

Now the two datasets could be compared and to do so a Pearson Product-Moment Correlation (r) value was 

calculated to compare the salinity and temperature values across each dataset, as shown in table 6 and figure 

11.  From the table we can see that the maximum correlation for temperature and salinity is 0.94 and 0.96, 

the minimum correlation is -0.90 and -0.96 and the average correlation is 0.44 and 0.57 respectively. We 

can see that salinity tends to be better correlated between the observed and model data than temperature. 

There were three temperature datasets with negative correlations, two salinity datasets with negative 

correlation and one salinity dataset with no correlation.  

Cruise+Cast date depth lat lon

1702b-95 8/13/2017 19:14 16 68.7668 -80.841

1702b-89 8/9/2017 17:03 28 68.4906 -99.8955

1702b-87 8/9/2017 5:23 41 68.3279 -102.94

1702b-94 8/13/2017 16:17 42 69.2716 -80.6078

1702b-92 8/10/2017 9:22 52 69.1691 -100.695

1702b-91 8/10/2017 5:45 53 69.1707 -100.705

1702b-86 8/9/2017 0:31 55 68.4862 -103.429

1702a-3 7/9/2017 16:45 75 60.6961 -78.5643

1702a-2 7/8/2017 22:03 76 58.4258 -78.3035

1702b-90 8/9/2017 22:14 81 68.3061 -100.802

1702a-4 7/10/2017 9:10 86 62.5129 -78.4889

1702b-96 8/15/2017 7:17 89 65.451 -83.2584

1702a-7 7/11/2017 19:31 90 61.0419 -69.7163

1702b-85 8/8/2017 12:48 91 68.2471 -101.811

1702a-5 7/10/2017 21:00 92 62.3669 -74.662

1702a-6 7/11/2017 9:09 92 61.7868 -71.9121

1702b-88 8/9/2017 12:09 94 68.2426 -101.795

1702b-84 8/8/2017 9:08 97 68.3027 -101.738

1702b-83 8/8/2017 6:06 99 68.3028 -101.745
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It is expected that the correlation between the two datasets will have a weak to strong positive correlation 

and the average values meet these predictions. What was not predicted was the negative correlation between 

datasets, especially present in the 1702-002 and 1702-089 datasets. When examining these values, it appears 

that the model values for these two datasets extend straight down, when compared to a wider ranged value 

for the observed data. A comparison of the highest and lowest correlated datasets are shown in figure 12 

and 13. In either case the correlation values did not show any noticeable pattern in location or depth, as 

both shallow and deep casts had a mix of high and low correlation values.  

Table 6 Observed vs. Model Temperature and Salinity Correlation Values for Each Dataset  

  
 

Dataset

1702-002 -0.551 -0.815

1702-005 0.870 0.928

1702-006 0.709 0.783

1702-007 0.867 0.881

1702-083 0.605 0.770

1702-084 0.553 0.758

1702-085 0.546 0.805

1702-086 0.583 0.905

1702-087 0.805 0.964

1702-088 0.561 0.800

1702-089 -0.895 -0.957

1702-090 0.723 0.672

1702-091 0.900 0.944

1702-092 0.856 0.934

1702-094 -0.403 0.447

1702-095 -0.231 -0.010

1702-096 0.942 0.943

Max 0.942 0.964

Min -0.895 -0.957

Mean 0.438 0.574

Correlation 

Salinity

Correlation 

Temperature
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 Figure 11 Correlation between Observed and Model Temperature and Salinity Values 

 

 

Figure 12 Highest Correlated Temperature and Salinity Graphs 
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Figure 13 Lowest Correlated Temperature and Salinity Graphs 

To further the analysis, the differences between the observed values and model values were calculated. 

Table 7 shows the results per dataset. Here we can see that the mean temperature difference across all 17 

datasets is -2.24oC with a standard deviation of 1.74 oC and the mean salinity difference across all datasets 

is -0.91 ppt with a standard deviation of 1.06 ppt. 

Table 7 Temperature and Salinity Differences between Observed and Model Salinity and Temperature Values 

  

Dataset

Mean Stdev Mean Stdev

1702-002 -3.374 2.340 -0.996 0.855

1702-005 -1.613 0.574 -1.147 0.137

1702-006 -1.186 1.004 -0.344 0.645

1702-007 -1.529 1.390 0.147 0.445

1702-083 -1.992 1.845 -1.461 0.814

1702-084 -2.126 1.899 -1.447 0.793

1702-085 -2.224 1.669 -1.311 0.607

1702-086 -4.755 1.269 -1.302 0.106

1702-087 -3.350 2.210 -0.903 0.110

1702-088 -2.748 1.754 -1.198 0.476

1702-089 -2.463 1.559 -3.301 2.537

1702-090 -2.915 1.798 -1.680 2.097

1702-091 -1.682 0.404 -1.003 0.184

1702-092 -1.651 0.605 -0.980 0.222

1702-094 -0.809 0.195 0.839 0.058

1702-095 -0.672 0.163 -0.034 0.077

1702-096 -2.231 1.326 0.499 0.548

Mean(P) -2.244 -0.915

Stdev(P) 1.737 1.057

∆ Temperature (oC) ∆ Salinity (ppu)
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To get a depth dependent difference in temperature and salinity, values for all casts were grouped together 

in 10m intervals. Since not all casts were equal in depth, a frequency distribution graph was created to show 

the number of values per depth range in figure 14. The mean and standard deviations of the differences 

between observed and model temperature and salinity values were then calculated and show in figure 15 

and 16. We can see that the highest mean difference between the two datasets occurs in the 20-39 m depth 

range for temperature and between the 0-9 m depth range for salinity. 

 

Figure 14 Frequency Distribution Across Depth Range for All Datasets 

 

Figure 15 Mean and Standard Deviation Temperature Difference Across All Datasets 
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Figure 16 Mean and Standard Deviation Salinity Differences Across All Datasets 

The salinity and temperature values were then used to create an SVP. The TEOS-10 sound speed algorithm 

is the accepted standard, however there exists several other methods to compute sound velocity (ie. 

Mackenzie, Del-Grosso, Chen&Millero). A quick comparison between the algorithms is given in figure 17 

and 18, depicting the differences in m/s between TEOS-10 for both observed and model datasets. We can 

see that overall the Mackenzie calculation yields a consistent lower sound speed velocity and the Chen & 

Millero yields a higher sound speed velocity when compared to TEOS-10. Overall, the difference is small 

as the highest deviation value occurring is 0.32 m/s. 
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Figure 17  Observed Mean Sound Velocity Difference From TEOS-10 

 

Figure 18 Model Mean Sound Velocity Difference From TEOS-10 

To then finalize the comparison, raytracing was performed between the datasets to calculate the depth 

error that would occur between the two datasets. Since a single-beam echosounder is used in this project, 

raytracing was done at nadir using the TEOS-10 SVP. The travel-time was computed for the observed 

SVP and then using that travel time a depth was computed using the model SVP. The results of this 

comparison are shown in table 8. It is shown that the maximum depth difference between the datasets is 

1m, the minimum depth difference is 0.03m and the average depth difference is 0.55m. This translates 

into a maximum, minimum and average depth error percentage of 1.55%, 0.168% and 0.76% 

respectively. 
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Table 8 Raytracing Results Comparison Between Observed and Model Depth Differences 

  

Overall, the observed maximum depth error of 1.546% in dataset 1702-086 does not seem significant. 

According to the International Hydrographic Office (IHO) Total Vertical Uncertainty (TVU) guidelines, 

this falls within level 1A survey standards. When calculating the error for the corresponding depth of 56m, 

the allowable TVU is 0.883m. The observed error is 0.879m and thus meets the requirements of a level 1A 

survey. The minimum depth error of 0.168% in the 1702-094 dataset, actually meets Special survey 

standards for TVU with an allowable error of 0.402m while we have calculated an error of 0.071m. More 

information on the survey standards can be found in the IHO S44 manual (International Hydrographic 

Organization, 2008).  

The discrepancies between the observed and model depths would be a result of differing input temperature 

and salinity values. A larger difference in salinity and temperatures would lead to a higher calculated error 

% between the observed and model depths. The sound velocity algorithm should play no significant role as 

the algorithm was kept the same throughout the study. 

Dataset obs_depth (m) obs_owtt (s) sim_depth (m) depth_diff (m) error% lat long

1702-002 77 0.053 77.850 0.850 1.092 58.4258 -78.3035

1702-005 75 0.052 75.457 0.457 0.606 60.6961 -78.5643

1702-006 86 0.060 86.353 0.353 0.409 62.5129 -78.4889

1702-007 94 0.065 94.442 0.442 0.468 62.3669 -74.662

1702-083 100 0.070 100.758 0.758 0.753 68.3028 -101.7446

1702-084 98 0.068 98.784 0.784 0.793 68.3027 -101.7378

1702-085 93 0.065 93.798 0.798 0.851 68.2471 -101.8109

1702-086 56 0.039 56.879 0.879 1.546 68.4862 -103.4292

1702-087 42 0.029 42.453 0.453 1.067 68.3279 -102.9396

1702-088 95 0.066 95.921 0.921 0.961 68.2426 -101.795

1702-089 29 0.020 29.297 0.297 1.015 68.4906 -99.8955

1702-090 83 0.058 84.001 1.001 1.192 68.3061 -100.8015

1702-091 54 0.037 54.333 0.333 0.613 69.1707 -100.7054

1702-092 53 0.037 53.320 0.320 0.600 69.1691 -100.6952

1702-094 42 0.029 42.071 0.071 0.168 69.2716 -80.6078

1702-095 16 0.011 16.031 0.031 0.195 68.7668 -80.841

1702-096 91 0.063 91.579 0.579 0.632 65.451 -83.2584

Max 1.001 1.546

Min 0.031 0.168

Avg 0.549 0.762

Depth Error (Obs vs. Model)
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Conclusion 

In conclusion, we can see the use of GLONASS along with GPS to have both benefits and drawbacks when 

surveying in the Arctic. There was no clear winner when examining only the positional uncertainly, 

however GLONASS support does make a difference between throwing out data and being able to use it in 

some cases. Also, it can be shown from the results that using the HYCOM ocean model would be an 

acceptable alternative for obtaining temperature and salinity values in the absence of observed CTD casts. 

When converted to a SVP and used to calculate depth through the water column, the maximum depth error 

seen was 1.55% for shallow depth (<100m) Canadian Arctic water casts. While it is not always cost-

effective or possible to obtain observed CTD casts when off-shore, these are very favorable results and 

show that the HYCOM model can be used and thus reduce time and costs during a survey. The GNSS and 

SVP processing methods established for the CSB project will allow for the automated data processing and 

metadata extraction, all while improving data quality. The novel use of a crowd-sourced approach along 

with automated processing will help further the onus of the mapping of the Canadian Arctic. 
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